Unification and anti-unification

a report in continuation of the course
”Logik programmering”

Erik Jacobsen
740500

June 6, 1991

Abstract

Unification as defined by Robinson [Rob65] is one of two dual concepts, the
other is called anti-unification. These concepts are presented in terms of
category theory and concepts from algebra.

The unification algorithm from [Rob65] is presented and I argue that it has
a worst-case exponential runtime. Modifying this algorithm, I remove one
source of exponential runtime. Paterson & Wegman showed in [PW78] that
a linear unification algorithm exists. I present this algorithm and compare
actual runtimes for all algorithms.

I then present an algorithm for anti-unification by Plotkin [Plo69] and
Reynolds [Rey69]. This algorithm has O(n?) runtime. Two new linear al-
gorithms, based on the same principle as the linear Paterson & Wegman
unification algorithm, are presented. Finally a parallel anti-unification algo-
rithm from [KMPP88] is presented.

Contents

1 Introduction 4
2 Theory 6
2.1 Terms 6
2.2 Substitutions oo 8
2.3 Unification and anti-unification 12
2.4 The category Term 16
2.5 Aposet ... 17
2.6 Asemi-lattice. 20
2.7 Alattice.. 21
2.8 Conclusion L 21

3 Algorithms for Unification

3.1 Robinsons algorithm
3.1.1 Inmoredetail
3.1.2 Occurcheck and timecomplexity

3.2 An algorithm using “Dynamical Programming”
3.21 Inmoredetail
3.2.2 Timecomplexity

3.3 The linear algorithm by Paterson and Wegner
3.3.1 Equivalence classes
3.3.2 The algorithm in detail

3.4 Implementations

4 Algorithms for Anti-Unification
4.1 Anti-unification algorithm (Reynolds)
411 Inmoredetail
4.1.2 Timecomplexity
4.1.3 Termination and correctness
414 Comment
4.2 Linear algorithm 1

4.2.1 “Lagzy Initialization”

422 Inmoredetaill

4.2.3 Reduced DAG

4.3 Linear algorithm 2

4.4 A parallel algorithm

4.4.1 The algorithm by Kuperetal.

Chapter 1

Introduction

This report is written in continuation of the course ”"Logik Programmering
E86” given by Gudmund Frandsen. The background for the report is that I
want to

- see how efficient the linear unification algorithm by Paterson & Wegners
is.

- use the things I learned in another course on Category Theory.

Chapter 2 is an attempt to present unification, and its dual anti-unification,
in terms of Category Theory and other concepts from higher algebra. The
main results are that unification and anti-unification are coproduct and prod-
uct in the category Term, and that terms form a semi-lattice with anti-
unification as the meet-operation. A lattice with unification as the join-
operation can also be constructed.

Chapter 3 presents unification algorithms. I investigate Robinsons original
algorithm, with and without occurcheck, and I modify it to make the oc-
curcheck more efficient — this removes the potential exponential runtime for
the occurcheck. The modified algorithm is still worst-case exponential, so
finally the linear unification algorithm by Paterson & Wegman is presented.

I have implemented all the algorithms, and I conclude the chapter by com-
paring actual runtimes on selected terms.

Chapter 4 presents anti-unification algorithms. Plotkin [Plo69] and Reynolds
[Rey69] were the first to present (almost identical) algorithms for anti-
unification, and this is presented. Two new linear algorithms, inspired by
the Paterson & Wegman algorithm, are then presented.

The process of unification cannot profitably be executed on parallel pro-
cessors, but anti-unification can, and I present a parallel algorithm from
[KMPPSS].

None of the anti-unification algorithms have been implemented.
The intended reader of this report should have knowledge of

- Logic programming, e.g. corresponding to the course ”Logik program-
mering” (course-notes: [Fra86]).

- Elementary category theory, e.g. corresponding to chapters 1 and 2 of
Arbib & Manes: ” Arrows, Structures, and Functors” [AMT75].

- Lattices, posets etc., e.g. corresponding to MacLane & Birkoff: ” Alge-
bra”, chapter XIV, sections 1 and 2 [MB79].

A good survey article about unification is [Kni89).

I want to thank my supervisor Gudmund Frandsen for advice and sugges-
tions, and for his patience.

Erik Jacobsen, June 1991

Chapter 2

Theory

This chapter summarizes the contents of several articles:
- Definitions and theorems about substitutions come from [Rob65] and
[LMMS6].
- The lattice structure of terms comes from [Rey69].

- The category Term is from [Plo69].

2.1 Terms

Definition 2.1.1 Variable. A variable is represented by an identifier start-
ing with an uppercase letter — it can be subscripted. O

Example 2.1.2 The following are variables:

A7 BJ C7 A17 BQ; CS

O

Definition 2.1.3 Function symbol. A function symbol is represented by an
identifier starting with a lowercase letter — it can be subscripted. Function
symbols taking n arguments are called n-ary. 0O-ary function symbols are
individual constants. ([l

Example 2.1.4 The following are function symbols.

f? g, h; f17 g2, h3

O
Definition 2.1.5 Term. A term is either
- a variable, or
- an n-ary function symbol with n terms as arguments.
The set of variables occuring in a term t is called var(t). 0J
Example 2.1.6 The following are terms:
fr A g(Af)
OJ

Example 2.1.7 Let t = f(g(X,h), X, g(h,Z)). Then var(t) = {X,Z}. The
term ¢t may be viewed as a tree, see figure 2.1. The nodes in the tree repre-
sent the function-symbols, and the leaves represent variables and individual
constants. 0

For simplicity we will assume in the following that whenever two nodes have
the same function-symbol, they also have the same arity.

7

/N

/\ /\

Figure 2.1: The term f(g(X,h), X, g(h, Z)) viewed as a tree.

2.2 Substitutions

Definition 2.2.1 Substitution. A (non-ordered) substitution is a finite set
of pairs of variables and terms:

0 ={vi/t1,...,0/tn}, n <00 (2.1)

such that i # j = v; # v;. If n =1 we call it a single substitution. O

Definition 2.2.2 Domain and range. Let 0 = {vi/t1,...,v,/t,} be a sub-
stitution. We define

domain(0) = {vi,...,v,} (2.2)
range(d) = U var(t;) (2.3)

O

Definition 2.2.3 Ordered substitution. An ordered substition is a finite se-
quence of single substitutions:

n = {vi/ti H{ve/ta} - - {vn/tn}, n < 0 (2.4)
O

Definition 2.2.4 Applying substitutions. The non-ordered substitution 6
applied to a term ¢, written t6, is the term ¢ where each occurrence of variables
in ¢ is replaced with its substitution in 6:

f(t10,... t0) ift = f(ty,... 1)
=< t ift=vandov/t' €6 (2.5)
v ift=vandov/t' €6

where f is a k-ary function-symbol and v represents a variable.

When applying a sequence of substitutions 7 to a term ¢, written t o n, we
must take each substitution in order:

ton= { tH{oi/t1} o {va/ta} - {vn/tn} i ={vi/t:i} - {v./ta}, 0<n
t if n={}
(2.6)
O

Definition 2.2.5 Composition of substitutions. The composition of two
substitutions

0 = {vn/t1,...,vn/tn} (2.7)
Oy = {wi/s1,...,wr/sk} (2.8)
1s
01600 = {v1/t10s, ... 0, /t,00, w1 /51, ..., wk/Sk} (2.9)
If 3i,7: w; =vj, then the pair w;/u; is omitted. O

Lemma 2.2.6 Definition 2.2.5 is welldefined, i.e. the composition of two
substitutions is again a substitution.

Proof: This is easy. Obviously 0,6, is a finite set, and per construction the
variable-parts of the variable/term-pairs are disjoint, as required by definition
2.2.1. O

Example 2.2.7 Composition of substitutions is not commutative. A very
simple example of this is:

0, = {a/b} (2.10)
0, = {a/c} (2.11)

Applying definition 2.2.5 we get

0,6, = {a/c} (2.13)
U

Lemma 2.2.8 Application of substitutions is distributive, i.e.:

£(0,0,) = (£6,)05 (2.14)

Proof: It is enough to show that v(6165) = (vb;)0y for any variable v. This
gives us 3 cases:

a) If U/tv € 91, then U(6192> = tveg = (v91)92.
b) If v/t, € O ANv & domain(6,), then v(016;) = t, = vly = (v6;)0s.
c) If v & domain(6,) U domain(6;), then v(6165) = v = (v6;)bs.

O
Lemma 2.2.9 Composition of substitutions is associative, i.e.:
(6192)93 - 01(9293) (215)
Proof: A little healthy exercise in symbol-manipulation. Let
01 = {Ul/tla'”avn/tn} (216>
Oy = {wi/s1,...,wr/sk} (2.17)
05 = {w/r,...,um/rm} (2.18)

10

Then we have

0105 = {v1/t10s, ... 0, /t,02,w1 /81, ... wi/Sk} (2.19)
(0102)05 = {v1/t10203, ..., 0, /0203, w1 /8105, . .. wy/sK03,

UL)T1, ey U/ T } (2.20)

0205 = {wi/s10s,...,wk/Sk03,u1/T1, .« U/ Tm} (2.21)
01(60203) = {v1/t10505, ... 0, /t 0203, w1/5103, . .., wi/sk05,

ULT1, ey U/ T } (2.22)

where (2.20) and (2.22) show us what we want (we still have to remove the
rightmost of any pair with the same variable-part in all the equations, but
that will make no difference). O

Lemma 2.2.10 The set of substitutions with composition as operation form
a monoid.

Proof: From lemma 2.2.6 we see that substitutions are closed under compo-
sition, and from lemma 2.2.9 we get that composition is an associative binary
operation. The unit element is e = {}, since

VO : e =0Oe =0 (2.23)

O

Example 2.2.11 Obviously the set of substitutions with composition does
not form a group, since substitutions generally does not have inverses. The

only substitutions that do have inverses, are those described in example 2.5.5.
O

Definition 2.2.12 Idempotent substitution. A substitution 6 is idempotent
if
0 =00 (2.24)

O

11

Lemma 2.2.13 A substitution 6 is idempotent if and only if domain(d) N
range(6) = 0.

Proof: =: (contradiction) Assume domain(f) N range(d) # 0. Let Y €
domain(0) N range(f) and Z/t € 0, such that Y € var(t). Then Z6 = t and
(Z0)0 = t0. But t # t0 since y € var(t), and IY/t' € 6 : Y # ¢/, so 0 is not
idempotent.

<: Let V € domain(f). Since var(V0) C range(f) we have that var(V0) N
domain(0) = . Thus VO = (V6)0, so 6 = 60. O

Example 2.2.14 The composition of two idempotent substitutions is not
necessarily idempotent. Consider

0 = {X/f(Y)} (2.25)
0, = {Y/X} (2.26)
Then
0o, = {X/f(X)} (2.27)
([

Robinsons unification algorithm — to be introduced later — will produce idem-
potent substitutions, see example 3.1.5.

2.3 Unification and anti-unification

Definition 2.3.1 Unificator. A substitution @ is called a unificator for a set
of terms {t1,... &}, if [{t10,..., 60} = 1. t; = t;0 is a common instance
of {tl,...,tk}. OJ

12

Example 2.3.2 The set of terms

{p(X, f(X),Y),p(g(Z2), W, W)} (2.28)
has this unificator:
0 ={X/g(Z),W/f(9(2)),Y/f(9(Z))} (2.29)
{p(X, f(X),Y)0,p(g(Z), W.W)0} = {p(9(Z), [(9(2£)), f(9(Z)))} (2.30)
O

Definition 2.3.3 Anti-unificator. A set of substitutions {6;,...,60;} is
called an anti-unificator for a set of terms {t1,... ¢}, if JtgVi : tgh; = t;.
The term t¢ is called a common generalization of {t1, ... 1} 0J

Example 2.3.4 The set of terms

{p(f(a,9(Y)), X, 9(Y)), p(h(a, g(X)), X, (X))} (2.31)

has the anti-unificator {61, 6}, where
0 = {Z1/f(a,9(Y)), 2Z2/Y} (2.32)
0 = {Z1/ha,9(X)), Z2/ X} (2.33)

and the common generalization

(%1, X, 9(2s)) (2.34)
p(Z1, X, 9(Z)0 = pl(f(a,g(Y)), X, g(Y)) (2.35)
p(Z1,X,9(Z2))0: = plh(a,g(X)), X, g(X)) (2.36)

U

Example 2.3.5 We can view unification and anti-unification with the dia-
grams in figure 2.2. O

13

t1 to o ts t to o tr
0 0o
0 0 01 O,
t[tG

Figure 2.2: Unification and anti-unification.

Example 2.3.6 A unificator does not always exist. The terms

{f. g} (2.37)

cannot have any substitution as unificator, since the terms are different, and
contain no variables.

On the other hand an anti-unification always exists. We may e.g. always
construct the trivial anti-unification for the terms {t¢q,..., ¢} as:

and will thus have this common generalization:
Z (2.39)

O

Definition 2.3.7 Most general unificator (MGU). A unificator 6, for a set of

terms, {t1,...,tx}, is called a most general unificator, when given any other
unificator, 7, there exists a substitution p such that n = pf. We call t; = 0t;
the least common instance (LCI). O

Example 2.3.8 The common instance in 2.30 is a MGU for the terms given.
See example 3.1.4. 0

14

Lemma 2.3.9 A MGU exists if and only if a unificator exists.

Proof: See corollar 3.1.3. O

Definition 2.3.10 Most general anti-unificator (MGA). An anti-unificator
{61,..., Ok}, for a set of terms, {t1,...,%}, is called a most general anti-
unificator, when given any other anti-unificator, {n;,...,n}, there exists a
substitution p such that n; = 6;p, Vi. We call ¢4, such that t560; = t;, the
greatest common generalization (GCG). O

Example 2.3.11 The common generalization in 2.34 is a GCG for the terms
given, since it is a result of applying the algorithm in section 4.1. 0

Example 2.3.12 Neither MGA and MGU are unique. In example 2.3.2 we
could have chosen this unificator:

0" ={X/g(V),W/f(g(V)),Y/f(g(V)), Z/V} (2.40)

giving a LCI of

p(g(V), fg(V)), F(g(V))) (2.41)

In example 2.3.4 we could choose
0y = {Z1/f(a,9(Y)), 22/Y, Z3/X} (2.42)
0, = {Zi/Ma,9(X)), 2/ X, Z3/X} (2.43)

giving a GCG of

(21, Z3,9(Z2)) (2.44)
It looks like LCI’s and GCG’s are unique up to renaming of variables, and
indeed we shall prove this in lemma 2.5.3 and 2.5.4. 0

15

2.4 The category Term

Definition 2.4.1 The category Term. This category is defined with objects
being terms (definition 2.1.5), and morphisms between these objects being
substitutions (definition 2.2.1), such that if 8 is the morphism from ¢; to ta,
then # must act as the identity on variables not in var(t;), i.e.:

X &wvar(ty)) = X0=X (2.45)

We see that if there is a morphism between two objects, then it is uniquely
determined due to the demand in (2.45). Thus from one object to another
there is exactly zero or one morphism. U

We need to recall two definitions from category theory (see [AMT75, pages 10,
13 and 29]):

Definition 2.4.2 In a category a product of objects Oy, ...,0, is an object
O equipped with n morphisms (called projections)

m: O—0...,m,: O— 0, (2.46)
such that given any other object P with morpishms
pr: P—0O,....,pn: P— 0O, (2.47)
there exists a unique morphism p, such that
pi=mp, 1<i<n (2.48)

Similarly a coproduct of objects Oq,...,0O, is an object O equipped with n
morphisms (called injections)

t: O —0,....tp: O, — O (2.49)
such that given any other object P with morpishms
¢: Oh—P,....q,: O, — P (2.50)
there exists a unique morphism ¢, such that
¢ =qt, 1<i<n (2.51)
O

16

t .

T

l%

Ip

/
G

Lt
%
7]

Mk

Figure 2.3: MGU and MGA.

Example 2.4.3 We can profit from looking at the diagrams in figure 2.3.
This diagram shows us that the MGU is a coproduct of terms and the MGA
is a product of terms in the category Term (we note that p is unique — see
the argument following (2.45)), where the projections in the product are 6,
and the injections in the coproduct are all equal to #. Thus MGU and MGA
are dual concepts. ([l

Example 2.4.4 In [AM75, pages 10-14] we see that in the category Set
product and coproduct of sets always exist — the product is the usual cartesian
product and the coproduct is the disjoint union. In the category Term the
coproduct of terms does not always exist, whereas the product of terms
always exists (see example 2.3.6). O

2.5 A poset

Example 2.5.1 The set of terms can be equipped with the quasi-ordering
<, defined as!
ty Ity

& 30 1o =t (2.52)

1See section 2.7 on page 21 for a discussion of this definition.

17

When t; <ty we also say that t; matches t,. < is a quasi-ordering since
t<t (2.53)
t1 Ddia Nty Jit3 =t Jis (254)

To prove reflexivity (2.53) we only need to observe that the empty substitu-
tion € = {} has the effect that te = ¢. For transitivity (2.54) we will use that
if t181 = tg VAN t292 = t3, then t19102 = t3. U

< is not a partial ordering since that would also require anti-symmetri, ¢; <
tay Nty <ty = t; = to, which is not the case. We can however define an
equivalence relation ~:

t1~ty & 11 Jta Nty <1ty (255)

~ is clearly reflexive and symmetric, and transitivity is obtained directly
from the transitivity of .

Example 2.5.2 A few examples of equivalences and non-equivalences:

Z ~ X (2.56)
f(A,B) ~ f(C,A) (2.57)
f(A,B) o+ f(2,2) (2.58)

f(A) % fl9) (2.59)
O

The ordering < can be extended in a natural way to the equivalence classes
just defined:

<ty & 3 cty, Fyctyty Uty (2.60)

< is a partial ordering: it inherits reflexivity and transitivity from the quasi-
ordering above, and anti-symmetry is obtained directly from (2.60).

So these equivalence classes forms a poset, a partially ordered set.

We can still talk about unification and anti-unification between these equiv-
alence classes, except that now the #-substitutions are no longer unique —
they depend on the actual representative choosen. We have these lemmas:

18

Lemma 2.5.3 a) If ¢ and t;; are both GCG’s for the same set of terms,
then t¢ ~ tg.

b) On the other hand, if t5 is a GCG, and t ~ tg then t is also a GCG for
the same set of terms.

Proof: a) We have that

E|p12 ta = tlgpl = Zf/G ita (2.61)
dpaite =tepe = te <ty (2.62)

which means that tg ~ ;.
b) Let t;; be any common generalization. Since ¢ is a GCG, then

Jp:tg =tap (2.63)
and since t ~ tg then
J0:t =tq0 (2.64)
but then
t =tgh = typl (2.65)
which is what is required for ¢ to be a GCG. U

Lemma 2.5.4 a) If ¢; and ¢} are both LCI’s for the same set of terms, then
t; ~ .

b) On the other hand, if ¢; is an LCI, and t ~ t; then t is also an LCI for
the same set of terms.

Proof: a) We have that

lei pitr = ti[= t;rd t,I (266)
Elpgl pgt/I =t; = t/I <t; (267

which means that ¢; ~ t].
b) Let ¢} be any common instance. Since ¢; is an LCI, then

dp: pt; =t (2.68)
and since t ~ t; then
360:t = 0t; (2.69)
but then
t = 0t; = Opt (2.70)
which is what is required for ¢ to be an LCI. O

19

The obvious similarities between the proofs of lemma 2.5.3 and 2.5.4 suggest
that we should have proved the latter just referring to dual concepts.

Example 2.5.5 If t; ~ t5 then a substitution #, such that t,0 = t5, can only
contain variable/variable substitution pairs, and

Xl/HEQAXQ/YQEQXI#ng}/l%YQ (271)

This is another way of saying that 6 is a permutation of the variables, and as
such # also has an inverse. So two terms in the same equivalence class have
the same function-symbols at the same places in the terms, and

ty ~ to = |var(ty)| = |var(ts)| (2.72)

O

2.6 A semi-lattice.

Lemma 2.6.1 The partial ordering < on the equivalence classes is a semi-
lattice (or meet-lattice), where the g.l.b. (M) is defined as a generalization of
the GCG:

t1 €1 Aty € ty: 1y Mty = GCG(ty, 1) (2.73)

Proof: We know from algorithm 4.1 and section 4.1.3 that a GCG always
exists. 0

The bottom element in this semi-lattice is the equivalence class consisting of
terms of the form X, where X is a variable.

Since the meet-operation (M) of this lattice is anti-unification, we might sus-
pect that a join-operation (LJ) could be defined as unification, but as example
2.3.6 shows, a unificator does not always exist. In section 2.7 however, we
extend the semi-lattice to a lattice.

20

Lemma 2.6.2 The terms consisting of exactly one variable in the category
Term are all initial objects, since if X is a variable, then

Vi36: t = X6 (2.74)

Proof: Indeed, we may choose 6 = {X/t}. O

2.7 A lattice.

If we want to extend the semi-lattice to a lattice, we must “invent” a super-
l.u.b., i.e. an element greater than all terms. Such a term conveys no infor-
mation, and is called the null term: €.

The counterpart to (2 is the universal term .A, which in our case is the
equivalence class X, i.e. terms consisting of just one variable.

Introducing € we must note that the definition of < does not hold when €
is involved, i.e. there is no 6 such that 8 = Q, even if £t I Q.

In a sense the lattice we have defined is upside down, since €2 intuitively
should be the least element of the lattice. This is due to the definition of
< in example 2.5.1, which is the one used in [Plo69]. However in [Rey69]
the definition is the opposite giving a lattice with {2 at the bottom. In that
lattice the terms least common instance and greatest common generalization
make better sense.

2.8 Conclusion

I hope to have shown that the concept of unification leads to a beautiful and
coherent mathematical theory. It is nice to be able to present this in terms
of category theory, but a bit unsatisfactory, since there is no indication of
what it can be used for. In [AMT75] it says

21

Category theory is the mathematician’s attempt to lay bare some
of the underlying principles common to diverse fields in the math-
ematical sciences. It has become, as well, an area of pure mathe-
matics in its own right.

What I have done is just a few exercises in pure mathematics, but I would
have liked it to have had some element of applied mathematics as well. The
next two chapters on algorithms for unification and anti-unification will com-
pensate for that.

22

Chapter 3

Algorithms for Unification

There exist many unification algorithms, see e.g. [Kni89, page 96].

I will present two unification algorithms from the litterature:

- The “classical” as presented in [Rob65].

- The “linear” as presented in citepatweg:lu and [dC86].
In addition I modify the classical unification algorithm with the technique
called “Dynamical Programming”, to obtain an algorithm that in some cases

are better than the other two. This is demonstrated in tables 3.1 and 3.2,
where I compare runtimes of the algorithms.

In all algorithms I assume for simplicity that only two terms are to be unified.

3.1 Robinsons algorithm

The algorithm presented below is closer to a real implementation than the
one in [Rob65, page 32], and the one in [Fra86]. Neither of the two can be im-
plemented directly, so I have chosen to formulate it as a recursive algorithm,
where the fundamental structure can be used in an implementation.

23

Algorithm 3.1.1 Robinsons unification algorithm.
Input: Two trees, t; and t5 to be unified.
Output: A most general unificator 6, or a message that no unificator exists.

Method:
Step 1: Set ¢ = {}. Instead of changing the input trees whenever a substi-
tution is made, we must look at the trees through 6" using this function:

fla(@ th),...,a(0 t,) it = f(tr,... tn)
alf) =< o, t) ift=vandov/t' €6 (3.1)
v ift=vandov/t' €6

This function will also be used to produce the final 6 (if this is needed).
Step 2: Traverse t; and 5 simultaneously. Assume the nodes considered are
w in t; and v in t,.

Step 2a: If u = v, then simultaneously traverse the sons (if any) of u and v.
Step 2b: If u # v, then check:

a. If both nodes are function-symbols output “No unificator” and stop.

by. If wis a variable: if u occurs in v, output “No unificator” and stop.
If w does not occur in v set ' = 0" U {u/v}.

by. If v is a variable: if v occurs in u, output “No unificator” and stop.
If v does not occur in u set ¢ = 0" U {v/u}.

Step 3: If a final # is needed it is produced by unioning all v/a(¢’,t) for all
v/t ed.

0 will now contain the unificator — unless, of course, it has stopped with the
message “No unificator”. O

Lemma 3.1.2 Algorithm 3.1 will stop, and if the two terms have a unifica-
tor, # will be an MGU.

Proof: The proof for the “unification algorithm” in [Fra86] can be used
directly. ([l

Corollar 3.1.3 When two terms has a unificator they will also have a most
general unificator. 0

24

Example 3.1.4 Let’s run the algorithm on the two terms in example 2.3.2:

{p(X, f(X),Y),p(9(Z), W, W)} (3.2)

The roots of the two trees are identical, so we look at the first two sons.
One is a variable, X, the other, ¢(Z), is a term without X, so we start
setting 6 = {X/g(Z)}. We have the same situation for the second sons, so
we extend 6 to {X/g(Z),W/f(X)}. The third sons are both variables — it
doesn’t matter which variable we choose to substitute for the other, so let’s
extend 6 to {X/g(Z),W/f(X),Y/W}. However we forgot to use a, so we
should have written:

{X/9(2), W[f(9(2)),Y]f(9(%))} (3.3)

which is identical to (2.29). O

Example 3.1.5 It is clear that by using o will ensure that 6 is an idempotent
substitution. O

3.1.1 In more detail

The algorithm can be specified in more detail. The function OccursIn(v,t) is
a simple recursive function that returns true if variable v is found in term ¢.

proc traverse(ty,ts)
th =, t)
t/2 = Oé(el,tg)
if ¢ # t,, then
if IsVar(¢}) then
if OccursIn(t,t,) then
stop “No unificator”
0 =0 U {t)/th}
elsif IsVar(t,) then
if Occursln(t),t}) then
stop “No unificator”
0 =0 u{ty/t\}

25

else
stop “No unificator”
endif
else
traverse(t].son[i],th.son[i]), 1 < i < t}.#sons
endif

v = ()
traverse(ty,to)

0:={}

0 :=0U{v/a(0, 1)}, Yo/t €

In an actual implementation we will use o only when necessary, and not just
uncritical at the start.

3.1.2 Occurcheck and timecomplexity

Example 3.1.6 Robinsons algorithm has exponential runtime on some
terms. With the terms

p(f(X17 X1)7 f(X2, X2), R f(Xn; Xn))
p(Xo, ..o, Xog1) (3.4)

the algorithm will first set 0" = {X5/f(X1, X1)}, and then extend €' suc-
cessively with X;,1/f(X;, X;). To do this the algorithm must make the
occurcheck for X; 11 in f(X;, X;). When this term has X; substituted, and
then X; |, X; o, ..., the resulting tree will have O(2%) nodes. The size of
input is O(n), so in this case the algorithm is exponential. 0

Example 3.1.7 Some implementations of logic programming avoid this
problem simply by omitting the occurcheck. This has a strange effect on
e.g. these terms:

{7(X), X} (3.5)

Normally this will result in the message “No unification” from step 2b.bs in
the algorithm above, but if we omit the occurcheck, we will get the unificator

26

0 ={X/f(X)}. Using a will give an infinite substitution:

0 ={X/f(f(f(-)))} (3.6)

which, in a sense, is a correct answer, since

fX)0 = f(f(f(..) = X0 (3.7)

Omitting the occurcheck will also make normal processing faster. [Col82]
mentions that concatenation of two lists can be done in linear time without
occurcheck, but requires O(n?) time with occurcheck.

The occurcheck itself it not the only source to a potential exponential runtime
for Robinsons algorithm. As we shall see in example 3.2.1 and in table 3.2,
another set of terms can be constructed that will exhibit the exponential
runtime, even without the occurcheck.

Whether it is a reasonable choice to omit the occurcheck in an implemen-
tation is beyond the scope of this work. The reader might want to consult
[Cou83] for a formal discussion of infinite trees.

Instead of omitting the occurcheck every time, it is possible to analyze a
logic program (e.g. in PROLOG) in advance to avoid almost all unnecessary
occurchecks, as is stated in [Bee88]. The method employed might be useful
when compiling a PROLOG program to an abstract PROLOG machine.

3.2 An algorithm wusing “Dynamical Pro-
gramming”

If we look at Robinsons algorithm, and example 3.1.6, we see that the term
f(X;, X;) will be checked for variables X;.1, X;i0,...,X,,41. Thus we are
doing almost the same work several times. This suggests that we look at the
programming principle Dynamical Programming.

27

The first time we look for a variable in f(X;, X;) we might as well collect
the names of all variables present, and associate this set of variables with the
node representing f(X;, X;). Next time this term is considered we only have
to look at this set of variables.

A set of variables is not static. Whenever a new substitution, X/t, is made,
all sets of variables V' with X present must be updated: V' = V\{X }Uwvar(t).
To perform this update we have to recursively traverse the two terms to be
unified. Whenever we meet a node with a set of variables without X, we
need not go further down the tree.

3.2.1 In more detail

We need to change two things in Robinsons algorithm: The Occursln-
function, and the updating of #’. We also extend each function-node with
a boolean: Calculated, stating whether we have already calculated the vari-
ables of this subtree, and with a set of variables: Variables, containing the
variables of this subtree (if calculated).

func OccursIn(v,t)

if IsVar(t) then
return v =¢

else
CalculateVariables(t)
return v € t.Variables

endif

where

proc CalculateVariables(t)
if IsFunc(t) A —t.Calculated then
t.Variables := {}
1 <4 < t.#sons:
if IsVar(¢.son[i]) then
t.Variables := ¢.Variables U t.sonli]
else

28

CalculateVariables(t.sonl[i])
t.Variables := ¢.Variables U t.son[i]. Variables
endif
endif

Whenever we add v/t to 8’ we must perform UpdateVariables(t;,v,var(t)),
1 <4 <2, where

proc UpdateVariables(t,v,s)

if IsFunc(t) A t.Calculated A v € t.Variables then
t.Variables := t.Variables \v U s
UpdateVariablesInTree(t.Sons[i],v,s), 1 < i < t.#sons

endif

3.2.2 Timecomplexity

Example 3.2.1 As we can see from table 3.1 this algorithm is much faster
than Robinsons algorithm on the terms from example 3.1.6. It is even faster
than the one presented in section 3.3! Unfortunately it still has exponential
growth on this set of terms, since it needs to compare exponentially larger,
but identical, trees:

a(p(f (X1, X1), f(Xa, Xa2), -+, [(Xn, Xn)),
q(f(X17X1)7f(X27X2)7'"af(Xn7Xn))) :
(l(p(XQ,...,Xn+1),q(X27...,Xn+1)) (39)

As long as we are trying to unify the p-terms, nothing is changed. When we
get to the g-terms we have made substitutions for variables X, ..., X, 11,

so the algorithm proceeds to compare larger and larger subtrees, f(X;, X1),
Ff(Xy, Xy), f(Xq, X1)), ete., all of which are identical. The last tree will
have O(2") nodes, and thus the algorithm will run in exponential time. The
same argument holds for Robinsons algorithm without occurcheck, and table
3.2 illustrates this fact beautifully. ([l

We observe again that the reason for exponential runtime is redundant work,
since we “know” that the trees mentioned above are identical. An algorithm

29

with less than exponential runtime needs to know more about common struc-
tures in the terms to be unified. The algorithm in the next section is a
solution to that.

3.3 The linear algorithm by Paterson and
Wegner

This algorithm was presented in [PW78], and later clarified in [dC86], and
solves the problem of exponential runtime. This is more complicated, and
slower for “small” terms, than Robinsons algorithm.

The first requirement for the algorithm to work is to have the input repre-
sented, not as trees, but as reduced DAGs, where common subexpressions
are represented as a single subgraph. In practice this requirement can be
relaxed, so that only terminals need to be represented uniquely. However,
the more structure-sharing available, the faster the algorithm will run.

In our case, where we only consider two terms to be unified, we will thus
have a DAG with two roots (a root being a node with indegree 0).

3.3.1 Equivalence classes

We define an equivalence relation between the nodes of our DAG, which we
can view as a reduced graph, with the following properties:

1. Whenever two function nodes are equivalent, their sons (in proper
pairs) are equivalent.

2. In an equivalence class, there is at most one function symbol (or in our
case: function symbol and arity).

3. The equivalence classes has a partial order, inherited from the partial
order of the DAG. This insures that the reduced graph is acyclic.

30

An equivalence relation with this property is called valid. [PW78] proves this
lemma:

Lemma 3.3.1 Nodes u and v are unifiable if and only if there is a valid
equivalence relation with v = v. In the affirmative case there is a unique
minimal valid equivalence relation.

Proof: See [PW78, p. 161-162]. O

This suggests that we shall try to construct equivalence classes to see if the
two roots are in the same equivalence class, in which case they are unifiable —
and hopefully constructing a unificator at the same time. A simple algorithm
for doing this is:

Algorithm 3.3.2 Test a pair of nodes v and v for unifiability.

Step 1. Set u = v.

Step 2. As long as we have a pair of nodes r and s with r = s, without
knowing the same about a pair of corresponding sons, " and s, set ' = .
Step 3. If the relation = is valid according to 2 and 3 above, then v and v
are unifiable, otherwise they are not. 0

This algorithm has one (small) problem in step 2, since the best equivalence
handling routine, union-find, uses time O(na(n)), where « is the functional
inverse of Ackerman’s function.

This is very close (as close as you can get) to a linear algorithm, since « is a
function with extremely slow growth. Even if n is the number of elementary
particles in the universe, a(n) < 5. This algorithm was presented by Huet
in 1976 as an almost linear algorithm.

The main idea in Paterson & Wegmans algorithm is to process the equiva-
lence classes in a special order, finishing so-called root classes first.

Definition 3.3.3 Root class. An equivalence class consisting of roots (nodes
with indegree 0) is called a root class. O

31

The first root class to be considered is the one between the two roots in the
DAG. When this is finished its nodes are deleted, and new roots and root
classes emerge. The core of the algorithm is to keep track of this. When two
terms have a unifier, there is a root class, due to:

Lemma 3.3.4 ([PW78, page 161]) Any nonempty equivalence relation sat-
isfying criteria 3 in the definition of validity has a root class.

Proof: An equivalence class, which is maximal with respect to the partial
ordering must be a root class. 0

If at some point in the algorithm we have nodes left, and no root classes, we
can conclude that the terms are not unifiable. At this point we can see how
an implicit occurcheck is made: If we were to unify a variable, say X, with
an expression involving this variable, say f(X), the algorithm would produce
a cycle in the reduced graph. No nodes in this cycle could ever become a
root, and thus a member of a root class.

All we need now is an efficient algorithm for manipulating root classes, and
this is given in the next section, where the root classes are represented as
stacks. Nodes are not explicitly deleted, but only marked so.

At one point [dC86, page 85| disagrees with [PW78]. [dC86] states that
when the algorithm creates links between corresponding sons in s and r, it
may create more than one link between two nodes, and argues:

It will take more than linear time to prevent a double link between
x and y (unless we unrealistically assume available a square ma-
triz. M of booleans, initialized with false values, where M(i,7)
indicates whether there is an edge between node i and j).

A small change in the algorithm is then suggested, that will permit multiple
links between a pair of nodes. However, as we shall see in section 4.2.1,
it is quite realistic to manipulate a square matrix in linear time (but using
quadratic space), and it is quite possible that [PW78] have thought about
this, although they do not mention it explicitly. In the next section I have
adopted the “small change”, as this is the easiest to use.

32

3.3.2 The algorithm in detail

Assume each node has been assigned a set representing it’s fathers, i.e.:
s.Father. This can be done by a simple traversal of the DAG (a node may
have more than one father in a DAG).

proc Finish(r)
var
S: Stack
if —r.Finished then
if r.Pointer #.1 then
stop “No unificator”
else
r.Pointer :=r
Init(.S)
Push(S,)
while |S| > 0 do
s := Pop(95)
if IsFunc(s) A IsFunc(r) A r.Symbol # s.Symbol then
stop “No unificatior”
endif
Vt € s.Father:
Finish(t)
Vt € s.Link:
if ¢.Finished V ¢t = r then
skip
elsif t.Pointer =1 then
t.Pointer := r
Push(S, t)
elsif t.Pointer # r then NB!
stop “No unificator”
else
skip
endif
if s # r then

!The “small change” mentioned: this ensures that we may have multiple links between

nodes.

33

if IsVar(s) then
o=oc{s/r}

elsif IsFunc(s) then
create links between corresponding sons in s and r

endif
s.Finished := true NB?
endif
endwhile
r.Finished := true
endif
endif

Create link between the two roots of the trees
o=¢€
Vf € FunctionNodes:
Finish(f)
Vv € VariableNodes:
Finish(v)

The substitution ¢ made by this algorithm is an ordered substitution, and
can — if needed — be converted to an unordered (“normal”) substitution by
the algorithm in [dC86, pages 86-88]. The details are omitted from this

report.

3.4 Implementations

I have implemented the 3 algorithms presented above, and I will present a
few runs on two different kinds of test-terms: Those from example 3.1.6 (T},),
and those from example 3.2.1 (.S,,):

L= (X X))o f(X X)) p(Xay o X))} (3:10)
Su = Halp(f (Xl,Xl) [(Xns X)),
q(f (X1, Xa), -, f (X, X)), (3.11)
a(p(Xa, ... n+1) ¢(Xa, ..o, Xni1)}

2In [dC86, page 90] this statement is misplaced.

34

For Robinsons algorithm I have also tested a version without occurcheck.

My implementations are not very sofisticated, and probably not very efficient
either. But they can be used to illustrate the time-complexity of the 3 algo-
rithms, and to estimate when Paterson & Wegners linear algorithm should
be used instead of Robinsons.

In Robinsons algorithm and in the dynamical algorithm I have only calculated
0, as the construction of 6 itself would always have resulted in exponential
runtime, since it is exponential in size.

The linear algorithm does not use a reduced DAG — only terminals are rep-
resented uniqely.

The implementations have been made in TurboPascal 5.0 on an IBM-PC-
clone (running 12 MHz) — the sources are not included in this report.

Robinson Robinson | Dynamical | Linear
w/occurcheck | wo/occurcheck

Ty 0.15 0.06 0.00 0.40
15 0.11 0.00 0.05 0.44
15 0.27 0.05 0.15 0.55
T 0.27 0.00 0.22 0.49
T5 0.66 0.06 0.22 0.88
T 1.38 0.12 0.33 1.01
17 2.77 0.22 0.33 1.15
T 5.38 0.11 0.33 1.32
Ty 10.80 0.10 0.43 1.76
T1o 21.63 0.00 0.55 1.63
T 43.04 0.11 0.30 1.73
T 86.23 0.00 0.58 1.92
113 172.42 0.10 0.55 2.14
Ty 344.89 0.17 0.71 2.25
Ty 689.48 0.11 0.76 4.28

Table 3.1: Runtime in seconds for 100 unifications.

35

Robinson Robinson | Dynamical | Linear
w/occurcheck | wo/occurcheck

Sy 0.11 0.16 0.17 0.66
S 0.17 0.16 0.17 0.97
Ss 0.39 0.22 0.50 1.28
Sy 1.10 0.00 0.78 1.33
Ss 1.63 1.08 1.32 1.94
Se 3.41 2.27 2.42 2.19
Sy 6.82 2.80 4.33 2.68
Ss 13.75 8.39 8.68 2.85
So 27.36 16.82 16.87 3.18
S1o 54.77 33.62 33.51 3.40
S11 109.85 67.27 66.56 3.83
S1o 219.82 134.34 132.77 4.10
Si3 439.33 268.68 265.13 4.22
S14 878.57 537.29 529.79 4.74
Sis 1757.31 1074.50 1059.36 5.11

Table 3.2: Runtime in seconds for 100 unifications.

In table 3.1 Robinsons algorithm is indeed exponential: Whenever the input
size grows with 4 nodes (from 7; to Tj,1) the time doubles. The linear
algorithm looks linear, and the dynamical algorithm seems to be much better.

However in table 3.2 the dynamical algorithm grows exponential, as expected.
We can also see that it is not only the occurcheck that makes Robinsons
algorithm exponential on some terms.

In table 3.1 the breakeven-point for Robinsons algorithm and the linear al-
gorithm seems to be around 75, and similarly in table 3.2 around S5. If a
reduced DAG was used, the linear algorithm would perform better in table
3.2.

Considering that the terms 75 and S5 are not typical for logic programming,

the linear algorithm does not look like a good candidate for a basic unification
algorithm. The dynamical algorithm however seems to be slightly better than

36

Robinsons, so it might be considered, even if it is exponential in the worst
case.

It is difficult to get an accurate measurement of small timeslices on an IBM-

PC, and this accounts for the small fluctuations in the tables (e.g. the entries
indicating 0.00 seconds are obviously wrong).

37

Chapter 4

Algorithms for Anti-Unification

The concept of anti-unification and (almost identical) algorithms for anti-
unification were presented by Plotkin [Plo69] and Reynolds [Rey69] in 1969.
I will present Reynolds algorithm (and mention how Plotkins differ) — this
algorithm uses quadratic time. Two new linear algorithms, invented together
with my supervisor Gudmund Frandsen, are presented (the first, however,
using quadratic space).

Finally I present a parallel algorithm for anti-unification proposed by Kuper
et al. [KMPPS8S].

Again, for simplicity, we only want to anti-unify two terms.

4.1 Anti-unification algorithm (Reynolds)

Algorithm 4.1.1 Anti-unification algorithm.

Input: Two terms represented as trees t; and 5.

Output: Two sets of substitutions ¢; and 6,.

Method: Set #; and 6, empty. Simultaneously traverse ¢; and ¢, in preorder.
Whenever different subtrees, s; and s,, are encountered, we look in #; and
05 to see if we have already made a substitution with these subtrees. If not,
we invent a new variable, say Z, and add Z/s; to 61 and Z/s, to 6s. O

38

In addition to updating 6; and 6, we could produce the tree tg from figure
2.3 while traversing ¢; and ts.

Plotkins algorithm differs from Reynolds in that whenever we make a new
substitution, we not only add it to #; and 65, but also replace all occurrencies
of s1 and sy with Z, whenever s; and s, occur at “the same place” in t; and
ty. It seems like an unpractical way to do it, but is obviously the same as
the method in Reynolds.

4.1.1 In more detail

We can write the algorithm in more detail, using a pseudo-language. This
algorithm is extended to produce the t5 as well.

func traverse(sy,ss)
if S1 7£ So then
if (Zl/Sl) €0 & (ZQ/SQ) € 0, & Z1 = Zy then
return 7;
else
Z := newvariable()
return 7
endif
else
t := copynode(s;)
t.son[i] := traverse(s;.son[i],se.s0n(i]), 1 < i < sy.#sons
return ¢
endif

lg = traverse(ty,ts)

39

4.1.2 Timecomplexity

The time to traverse the trees is O(n), where n is the number of nodes in the
trees. At each node we may have to search #; and 6,, the size of each cannot
exceed n. This search involves comparing subtrees, each with a maximum of
n nodes, but the total number of nodes in the trees stored in #; and 05 cannot
exceed n, so with a simple linear search we have a total time of O(n?). We
will later show an algorithm with timecomplexity O(n).

4.1.3 Termination and correctness

It is clear that the algorithm will eventually terminate, since it is just a
(possibly shortened) preorder traversal of a tree.

It is also clear that t;0, = t; and tg6s = to, since every difference in ¢; and
ty 18 “ironed” out with a suitable substitution in #; and 6,.

From (2.52) we see that
ta<Ut, A ta <ty (4.1)

Suppose
te Ity A te <ty (4.2)

We need to show that t;; Jts. Suppose this is not the case. Then there must
be two different, but corresponding! nodes in tl; and t¢, say v’ and u, where
u' is a function-node. The nodes in t; and t, corresponding with «' must be
function-nodes with the same function-symbol, due to (4.2). But in that case
the algorithm would have left 4 unchanged in ¢, which is a contradiction.

4.1.4 Comment

If we skip the search in 6; and 65, we will still get a generalization, but not
necessarily a least generalization, and will only use O(n) time.

1See definition 4.4.1.

40

4.2 Linear algorithm 1

Looking at Reynolds algorithm for anti-unification in section 4.1, we see that
it might be useful to have better control over common subexpressions. This
problem is the same encountered in Robinsons algorithm for unification, and
Paterson & Wegman solves this using a reduced DAG, see section 3.3. We
propose to do the same.

Assume the input is represented as reduced DAGs, d; and ds, for the two
terms in question. We shall investigate how a reduced DAG can be build in
section 4.2.3.

Each node in d; is assigned a unique number in the range 1...|d;|. This can
be done with a simple traversal of the DAGs in linear time?.

The algorithm is now similar to Reynolds. We traverse d; and dy in the
same way as we would do, were they trees. Whenever we meet a difference,
we need to know if we have made such a substitution already (same as in
Reynolds). In our case the two sub-DAGs can be identified by the numbers
assigned to their nodes (say n; and ng), so we need an efficient datastructure
for pairs of numbers.

4.2.1 “Lazy Initialization”

[AHUT74, exercise 2.12, page 71| presented an algorithm for maintaining a
subset of numbers in the range [1,..., N] in time proportional to the size of
the subset, but with space proportional to N. The main trick is to use lazy
initialization of the range.

We need an array A, with room for all elements in the range [1, ..., N], and
an array B, with room for the maximum number of elements in the subset,
say k. We may possibly also want an array C' with k£ elements containing
values associated with the numbers in the subset. A contains pointers to B,

2Linear in the number of nodes in the original trees

41

N[]
] |k 1k
] | f—used |]
1] — 1 1
A B C

Figure 4.1: Datastructures for “Lazy Initialization”.

and B contains pointers to A. See figure 4.1. The variable used indicates
which part of B (and C) is in use.

Init: Only entries of B in the range [1, ..., used] are valid, so the only thing
we need to do to initialize the whole datastructure, is to set used to zero. We
may need to allocate A, B and C.

Member: To see if i is a member of the set, we must look up b := A[i]. A
was not initialized, so b can be anything. First we check if 1 < b < used. If
this is not the case, then 7 is not in the set, otherwise we proceed to check if
B[b] = i. If this is not the case, then i is not in the set, otherwise it is.

Insert: To insert 7 into the set (if it is not already there), we must increase
the variable used by one, and set A[i] := used and Blused| := 1.

All 3 operations are done in constant time. If we also needed to delete a
member of the set, j, we could just set A[j] := 0. To reuse the space in B

we could build a list of free locations.

We have these operations:

42

it(S, N, k) O(1)
Member(S,i) O(1)
Insert (.S, 7) O(1)

provided 1 <7 < N and Insert is called no more than & times.

4.2.2 In more detail

We can now specify the algorithm in more detail. We use “lazy initialization”
to represent a set of pairs in the usual way, i.e. (7, j) maps to (i — 1) * max; +
J — 1, with N = max; * max,. The array C' contains a variablename in each
entry, and we extend Insert and Member with a parameter for a variablename.
Assume inx(i,7) := (i — 1) * max; +j — 1

func traverseDAG(s1,52)
if s;.name # s,.name then
if Member(S,inx(s;.num,se.num),Z) then
return 7
else
Z := newvariable()
0, :=0;,U(Z/s;), 1 <i<2
Insert(S,inx(s;.num,ss.num), 7)

return 7
endif
else
t := copynode(s;)
t.sonfi] := traverse(s;.son[i],sq.sonfi]), 1 < i < sy.#sons
return ¢
endif

0, = {},1<i<?2

d; := DAGify(t;), 1 <i <2

max; := numberDAG(d;), 1 <i <2
Init (.S, maxy*maxs,minimum(|¢1|,|¢2]))
te = traverseDAG(dy,ds)

43

4.2.3 Reduced DAG

We observe that Paterson & Wegners algorithm doesn’t really need a reduced
DAG to work. It only needs that terminal nodes are shared, although the
algorithm will be faster the more sharing of structure there is.

In our case we cannot restrict the DAG to this simple form, so we must
investigate how a reduced DAG may be built from a tree.

Algorithm 4.2.1 Reduced DAG. Assume that

- names of variables and functions are represented by a fixed-length bit-
string.

- father-pointers have been assigned to all nodes.

- that each node knows its number among its brothers.

Input: A tree.
Output: A reduced DAG.

Method:

Step 1: Assign to each node in the tree the length, [, of the longest path to
a terminal node (i.e. the height of the subtree). Collect all nodes with the
same [-value.

It is obvious that common subtrees must have the same [-value.

Step 2: Starting with terminal nodes (I = 0), use a radix-sort® to sort the
names. Nodes with identical names are now adjacent in the list, and can
be collapsed into one node. Doing this a son must modify its pointer in its
father.

Step 3: For each additional level (I > 0) we do a similar operation: Make
a sorting label for each node by concatenating the name of the node with

3 Also called bucket-sort or pocket-sort. A beloved child has many names.

44

the addresses* of its sons. Sort this list with a radix-sort, and collapse nodes
with identical sorting labels as before. When all levels have been processed
we are finished. (Step 2 is in fact just a special case of step 3.) OJ

A radix-sort is linear in the number of items and in the length of the bitstrings
sorted. In step 3 we sort strings with length b 4 na, where b is the bitlength
of a name, n is the maximum number of sons and a is the bitlength of an
address, which makes this a non-linear operation in a standard radix-sort.

A careful implementation of the radix-sort can be linear in the number of bits
sorted, e.g. by having the length of the sorting labels as primary sorting-key.
In this way the total time spent in algorithm 4.2.1 is linear in the number of
bits in the input tree.

4.3 Linear algorithm 2

“Lazy initialization” in linear algorithm 1 was needed to check if we have
already made a certain substitution. A different approach is this:

Whenever we make a substitution, we construct the new variablename by
concatenating the numbers of the two nodes in the DAG (see section 4.2).
This will automatically produce the same names when needed. We will likely
make duplicate substitutions, but these can be removed by a radix-sort after
the traversal of the DAG.

Then we can rename the new variables, either by giving them their number
in the sorted list, or by some other automatic name-generation.

This method is also linear and does not require quadratic space.

4or other unique node-numbers.

45

4.4 A parallel algorithm

In the litterature parallel algorithms are often presented in terms of the
parallel random-access machine (PRAM). For the details of this the reader is
referred to [CLR90]. I assume in the following that we use a CREW PRAM.

4.4.1 The algorithm by Kuper et al.

Kuper et al. [KMPP88] has proposed a parallel algorithm for anti-unification,
which I sketch below. There are a few basic definitions needed:

Definition 4.4.1 An edgelabel is an integer associated with an edge, and
has value i if the edge connects a father with its ¢’th son. If u is a node
in the tree, Path(u) is the sequence of edgelabels from the root to u. Two
nodes u and v are corresponding if their paths from the roots are identical,

i.e. Path(u)=Path(v). O
Algorithm 4.4.2 Parallel anti-unification.

Input: Two terms represented as trees, t; and ts.

Output: A term tg being the anti-unification of ¢; and t,.

Method: Assume u from ¢; and v from ¢5
Step 1: Find the corresponding nodes in ¢; and ts.

To do this we could compute the Path-values in the two trees, and then sort
these values. Path-values can be O(nlogn) bits long, but since a tree with
n nodes has exactly n different paths from the root, we can code each path
with numbers from 1 to n (using logn bits). To do this we proceed as follows
(we assume each node has a pointer, Father, to its father in the tree):

Initially w.Code is the edgelabel between w and its father.

46

a. Let u.Code be the concatenation of the strings w.Father.Code and
u.Code.

b. Since u.Code is now 2logn bits long we sort the numbers, and replace
u.Code by its number in the sorted list.

c. Then we use the classical technique of pointer jumping® and sets
w.Father := w.Father.Father, and continue with step a.

This process is repeated until all Father-pointers are nil.

The number of steps in this process is at most O(logn), since the height of
the tree can at most be n. Each step involves sorting a list of n numbers
of size O(logn) bits, and Cole, [Col86], gives an algorithm for doing this
in O(logn) time using n processors. The total time of this process is thus
O(log® n) using n processors.

At this point all corresponding nodes have the same Code, due to this lemma:

Lemma 4.4.3 [KMPP88, lemma 14]
Let u and v be nodes from the trees t; and ¢, respectively. Upon termination
of step 1, u.Code = v.Code if and only if v and v are corresponding nodes.

Proof: This is easily verified by induction — the argument can be found in
[KMPP88, page 118] O

Step 2: If uw and v are corresponding nodes with the same function- or
variablename, we may just output this name.

Step 3: If u and v have different labels we must invent a new variablename,
but we must choose the same variablename for all other pairs of nodes with
the same subtrees.

Kuper et al. propose to solve this using an injective function p(t,,t,), where
t, and t, are the subtrees with roots u and v.

This injective function can be computed like this:

5Also called recursive doubling.

47

a. For each corresponding pair of nodes, u; and v;, with different labels,
a new tree, w, is constructed with ¢, as its left son and ¢,, as its right
son.

b. We number the nodes in w; from 1 to |w;| in a deterministic fashion,
e.g. in preorder. Let W; be an array of length |w;|. All nodes will now
write their label in the position in W; corresponding to their number.

c. The W;’s are now string representations of the w;’s, so if we can sort
them we can find identical the w;’s that must have the same labels.
Since the W;’s are long (O(n)), we use a technique similar to the one
in step 1, to produce and sort encodings of logn bits.

d. Identical strings are adjacent in the sorted list, and can be given the
same label.

The numbering in preorder is an exercise in [CLR90, page 701, exercise 30.1-
6]. Using n processors, steps a, b and d take O(logn) time, while step c takes
O(log®n).

Step 4: In fact we have done more work than needed, since only maximally
different nodes, i.e. corresponding nodes with different labels, where no an-
cestors also have this property. So sons of nodes that has been relabelled,
must be deleted. ([l

This parallel algorithm, which takes O(log2 n) time on n processors, can be
simulated on a sequential machine in time O(nlog®n).

In the parallel case we can reduce the runtime by increasing the number
of processors needed. If we only sort the strings in step 1 every i'th itera-
tion, and use n2° processors, the total time can be reduced to O((log*n) /i),
provided 1 <7 < logn.

48

Bibliography

[AHUT74|

[AMT75]

[Bee88]

[CLRYO]

[Col82]

[Col86]

[Cou83]

[ACS6]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The
Design and Analysis of Computer Algorithms. Addison-Wesley,
1974.

Michael A. Arbib and Ernest G. Manes. Arrows, Structures, and
Functors. The Categorical Imperative. Academic Press, 1975.

Joachim Beer. The occur-check problem revisited. Journal of
Logic Programming, 5:243-261, 1988.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Algorithms for parallel computers. In Introduction to Algorithms,
chapter 30, pages 688-729. The MIT Press, 1990.

A. Colmerauer. Prolog and infinite trees. In W. K. Clark and
S. A. Tarnlund, editors, Logic Programming. Academic Press,
New York, 1982.

Richard Cole. Parallel merge sort. In Proc. Twenty-Seventh
Annual IEEE Symposium on Foundations of Computer Science,
pages 511-516. IEEE, 1986.

B. Courcelle. Fundamental properties of infinite trees. Theor.
Comput. Sci., 25:95-129, 1983.

Dennis de Champaux. About the Paterson-Wegman linear uni-
fication algorithm. Journal of Computer and System Sciences,
32:79-90, 1986.

49

[Fra86]

[KMPPSS]

[Knig9)]

[LMMS6]

IMBT79]

[P1o69)]

[PW78|

[Rey69]

[Rob65]

Gudmund Frandsen. Notes from the Course: Logic Programming,
Autumn 1986. 1986. In Danish.

G. M. Kuper, K. W. McAloon, K. V. Palem, and K. J. Perry.
Efficient parallel algorithms for anti-unification and relative com-
plement. In Proc. Third Annual IEEE Symposium on Logic in
Computer Science, pages 112-120. IEEE, 1988.

Kevin Knight. Unification: A multidisciplinary survey. ACM
Computing Surveys, 21:93-124, 1989.

J-L. Lassez, M. J. Mahler, and K. Marriot. Unification revis-
ited. In M. Boscarel, L. Carlucci Aiello, and G. Levi, editors,

Foundations of Logic and Functional Programming, pages 67—
113. Springer Verlag, 1986. LNCS 306.

Saunders MacLane and Garret Birkoff. Algebra. Collier Macmil-
lan, 1979.

Gordon D. Plotkin. A note on inductive generalization. In Ma-
chine Intelligence, volume 5, pages 153-163. 1969.

M. S. Paterson and M. N. Wegman. Linear unification. Journal
of Computer and System Sciences, 16:158-167, 1978.

John C. Reynolds. Transformational systems and the algebraic
structure of atomic formulas. In Machine Intelligence, volume 5,
pages 135-151. 1969.

J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the Association for Computing Machinery,
12:23-41, January 1965.

50

